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Abstract. It is known that the density operators p of a quantal system are grouped into 
classes of equally mixed ones. The class to which p belongs is its so-called mixing character. 
The set of classes is known to be a lattice. The Ruch and Mead principle of increasing 
mixing character in complete measurement is extended to general observables. It is shown 
that the principle of strictly increasing mixing character holds in general incompatible 
measurement, and some consequences are discussed. A sufficient condition for strictly 
mixing-homomorphic functionals, i.e. for those which preserve the ‘strictly larger’ relation 
in the lattice, is obtained. Density-operator-dependent strengthening of the natural 
pre-order in the set of general observables is investigated. 

1. Introduction 

Uhlmann (1972 and 1973) introduced a quasi-order (or pre-order) binary relation 
‘2’ called ‘more mixed’ between some density operators: 

p ’ > p  if p ’ = C  c A u ( * ) ~ u ( ~ ) + ,  
A 

where the U@) are unitary, U(A)+ are adjoint, and cA > 0, ZA c,, = 1. Actually the 
second relation has been used already in a paper by Jaynes (1957b) in a somewhat 
different context. Such a relation is reflexive and transitive turning the set of density 
operators into a so-called quoset (short for: quasi-ordered set). It induces an 
equivalence relation: 

P ’ - P  if ( p ’ > p )  and ( p > p ’ ) .  

and it makes the quotient set of the quoset partially ordered (through the ‘more mixed’ 
relation of class representatives), i.e., it turns it into a so-called poset (short for: 
partially ordered set). Wehrl (1974) proved that it has the structure of a lattice. 

This poset was rediscovered in another context by Ruch (1975). He introduced 
the term ‘mixing character’ of p for Uhlmann’s class to which p belongs, and denoted 
it by m [ p ]  (cf also Lesche 1976). 

We designate (for reasons that will become apparent) Ruch’s ‘larger mixing 
character’ by ‘a’. One has p ’ - p  if and only if p‘ and p have the same positive 
eigenvalues with the same multiplicities. Writing the eigenvalues of p‘ as p ;  a p i  a. . . 
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and those of p as p 1  2 p 2  2. . . , one has 

We say that m [ p ’ ]  is strictly larger than m [ p ]  and write m [ p ’ ] >  m [ p ]  if m [ p ’ ]  a m [ p ]  
and m [ p ‘ ]  # m [ p ] .  We show in this note that it is rather important to make this 
apparently trivial distinction of ‘strictly larger’ and ‘equal’ within ‘a’. 

In an N-dimensional state space, there exists a special density operator ( I / N ) I  ( I  
being the identity operator) describing the ‘most mixed’ ensemble. In contrast to this, 
every state It+b)(t+bl actually contains no ‘mixing’ at all. It is easily seen that (1) implies 

m [ ( l / N ) I l > m [ p l >  m[lt+b)(t+bII ( 2 )  

for every mixed density operator p ( p 2 # p )  that differs from ( l / N ) I .  The second 
inequality in (2) holds also in infinitely dimensional state spaces. 

Ruch (1975) showed that in the classical discrete approximation of statistical 
mechanics (cf Wehrl 1978) when a master equation governs the dynamics, the principle 
of increasing mixing character is valid. It is easily seen that one may replace ‘a’ by 
‘>’ in this monotonic increase. Subsequently Ruch and Mead (1976) showed that the 
principle is true also in the measurement of any complete quantal observable. 

Since the possibility that the second law of thermodynamics might be strengthened 
by substituting mixing character for entropy is opened up, we feel that an investigation 
aimed to clarify the basic relations between mixing character and entropy is physically 
relevant. 

In  0 2 the existence of a natural and absolute quoset structure in the set of general 
(incomplete and complete) observables with purely discrete spectra is pointed out, 
and the Ruch-and-Mead principle is extended to the measurement of incomplete 
observables. Calling ‘incompatible measurement’ that of an observable incompatible 
(i.e. non-commuting) with the density operator of the ensemble measured, the 
principle of strictly increasing mixing character in incompatible measurement is estab- 
lished. 

In (i 3 two consequences of this principle are discussed in order to gain a feeling 
for the scope and importance of the principle. 

After having established the physical relevance of the concept of ‘strictly larger 
mixing character’ in 0 2 and § 3, the subclass of mixing-homomorphic functionals, 
which preserve this relation, is investigated in 0 4.1. A general criterion is obtained 
and it is shown that von Neumann’s entropy and -Tr p 2  have the required property 
of being strictly mixing homomorphic. 

In 0 4.2. the mentioned absolute quoset structure of observables is utilised in an 
interpolation theorem pointing to the fact that the ‘larger mixing character’ relation 
is most closely connected with or underlying the concept of entropy of observables 
with respect to a given density operator. 

2. A generalisation of the Ruch-and-Mead principle 

According to von Neumann (1955) the general directly measurable observable A has 
a purely discrete spectrum {a,ln = 1 ,2 ,  , . . }. In its spectral form: A = X,, a,,P,, with 
I = X,, P,. P,P,,, = S,,,,P, and ( n  f n‘=San f a,,,). If 3 n ,  Tr P, > 1, then A is incomplete 
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and its measurement is an incomplete measurement; otherwise A and its measurement 
are complete. 

As is well known, in the set of general observables of a quantal system, some pairs 
are related by a single-valued functional dependence: A = f ( B ) .  It is, however, not 
widely realised that this defines a pre-order (or quasi-order) A d B (a reflexive and 
transitive but not antisymmetric binary relation), making a quoset out of the set of 
general observables. The induced equivalence relation (A - B e A  d B and B s A) 
holds if and only if A and B give (through their spectral forms) the same spectral 
decomposition of the identity. The induced partial ordering in the quotient poset is 
no other than the relation ‘giving a finer or equal spectral decomposition of the 
identity’. Incomplete observables are the ones for each of which there exists an 
inequivalent upper bound: ‘maximal’ observables (in the sense of d) are the complete 
ones. 

As further prerequisites for the generalisation, two results are required. The first 
is due to Luders (1951, cf also Herbut 1969 and 1974). It says that the predictive 
non-selective measurement (i.e. the one the results of which apply to the immediate 
future and that refers to the entire ensemble (henceforth shortly: measurement)) of 
a general observable A converts an arbitrary density operator p into 

p ’ = X  PnpPn. 
n 

(3) 

The second result was proved in previous work (Herbut 1974, Theorem 2). For 
arbitrary A and p, there exists a complete observable B = 2, b,Ja)(aI (a  #CY’+ 6,  f 
b,,) the measurement of which on p converts the latter into the same density operator 
as the measurement of A: 

Theorem 1 .  If p‘  is the density operator into which a general density operator p is 
converted by the measurement of a general observable A (cf (3)), then 

m [ p ’ I z m b l .  ( 5 )  

The proof follows immediately from the preceding result, because for the complete 
0 observable B relation ( 5 )  has been proved by Ruch and Mead (1976). 

As pointed out in previous work (Herbut 1969, IV, A ) ,  one has 

p‘  = p @[A,  p ]  = 0 ;  (6) 
in other words, the density operator changes if and only if the observable and the 
density operator are incompatible. As a consequence one has: 

Theorem 2. The mixing character strictly increases in incompatible measurement: 

Proof. As evident from (4) and (6), [A,  p ]  # O e [ B ,  p ]  # 0 ,  hence it is sufficient to 
treat complete observables: Now we repeat (and extend) the argument of Ruch and 
Mead (1976). Since we have to distinguish between matrices and operators, we write 
now (only in this proof) the density operator as $. 
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Let p be the matrix that represents the initial density operator $ in the eigenbasis 
{Ia)lVa} of the complete observable B. 

Let further p’ be the diagonal representation of 8: p’,” =P,$,~. Then there exists 
a unitary matrix U such that p = Up’U’. This implies pPa = p &  = E,” U&JJ~m = 

The measurement of B on $ converts the latter into b’. This operator is represented 
by p’ in the eigenbasis of B and its elements are pLP =p&Sap .  On the other hand, the 
elements make a so called bistochastic matrix, i.e. Ea IUu,12= Z, IUa,I2= 1. 
Finally, there is a theorem of Hardy et a1 (1952) stating that Va, p &  = Z, IUa,12p, 
amounts to the same as Vs, 

Z, I Ua, I2Pw 

i p j  s i p j  or m[b’lsm[p*]. 
j = l  f = 1  

This concludes the argument of Ruch and Mead. 
Now, [B, $3 # 0 implies that p is not diagonal and hence the matrix IUP,I2 is 

non-trivial (IU,,12 are not Kronecker symbols); and this in turn means that 
m [b’I> m [$I. 0 

In view of the fact that in classical physics a statistical ensemble never changes in 
measurement, the above change from p to p’  may be considered to be a fundamental 
quantal phnenomenon. It is accompanied by strict increase of mixing character. 

3. Some consequences 

3.1. Distant measurement and distant ensemble decomposition 

Let the indices 1 and 2 refer to two particles that are now far apart and non-interacting, 
but they have interacted in the past and, owing to this, are now in a correlated pure 
state 1 ~ ~ 5 ~ ~ ) .  Let us write it in its Schmidt canonical form (Herbut and VujiEiC 1976, 
Theorem 4): 

1412) =I rY2 I p m ) / X m )  
m 

where 

~1 = C rm I p m  )(pm I 9 P Z  = C rm IXm >(Xm I 
m m 

are spectral forms of the reduced density operators 

p1 =Tr2 1412)(4121, p2=Tr1 l412)(4121 

(Trl and Tr2 are the partial traces), and Vm, rm > 0. 
The measurement of a first-particle observable AI that is compatible with p1 is 

simultaneously also a measurement on particle 2 though neither the measuring 
apparatus nor particle 1 are in interaction with particle 2. This was called distant 
measurement and studied in the mentioned previous work. Owing to this measurement 
I412)(4121 changes into p;2  = Z m  rmIVm)(~mIOIXm)(XmI, and hence 

m[pLl> m[1#d4121lr 
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but the reduced density operators are unchanged and hence so are their mixing 
characters. 

When one measures a first-particle observable A 1  that is incompatible with the 
first-particle reduced density operator p1 of the given correlated two-particle state 
vector Idl2): [Al, p l ] #  0 ,  then the resulting two-particle density operator is 

or (7) 

Here I:, u,Ia:"')(a:"'1OI2 is the spectral form of A l  (which is for simplicity taken to 
be complete for the first particle, but is incomplete for the two-particle system); V n ,  
q! , ' 2 /pF) )  = ( a : " ) / ~ $ ~ ~ )  is the vector in the state space of the second particle obtained 
in the partial scalar product of the RHS (cf Herbut and VujiEiC 1976, Appendix l), 
the Ip:"') are of norm 1 but non-orthogonal (ibid., Theorem 2), and Vn,  qn= 
(a:"'lp,Icu:"') = (4121a:"')(a:"'1412) is the probability to obtain a, of A l .  

Both the two-particle density operator 1q512)(4121 and its first-particle reduced 
density operator p1 undergo a change in the measurement of the observable A I  
incompatible with them, and hence their mixing characters become strictly larger. 
The reduced density operator of the second particle p2 does not change (since 
[ A , ,  p2] = O), and so neither does its mixing character. Nevertheless, the first-particle 
measurement at issue accomplishes something also on the second particles: it is distant 
non-orthogonal ensemble decomposition. Namely, when one evaluates p2 = p i  = 
Tr, p i 2  from (7), one obtains p2 =E,, q,lp$'))(p&"'I (not a spectral form). Generalising 
with Ruch (1975) the mixing character of density operators to those of classical discrete 
probability (or statistical weight) distributions in the obvious way (cf (l)), one may 
say that in the second-particle non-orthogonal ensemble decomposition under dis- 
cussion, one has 

m [4n 1 > [pi1 

(pi being the eigenvalues of p2).  This is an immediate consequence of m [ p ; ] >  m [ p J  
and the fact that qn are the eigenvalues of p i  and the pi  are those of p l .  

3.2. The mixing property of entropy and its counterparts in terms of mixing characters 

The mixing property is an important feature of entropy and the latter may be derived 
from the former in the classical case (Shannon 1948 and Jaynes 1957a). To state it 
let us take a general observable A = Z, a,P,(n # n' 3 U, # a,.) in its spectral form such 
that [A, p ]  = 0. Then one can write (Herbut 1969, (A.lO) and (A.11)): 

where V n ,  w, =Tr  P,p (the probabilty of a, of A in p ) ,  and for w, > O :  pn = w,'P,p 
(pn gives a,, with certainty). For each n, R(p, )  (the range of p,) is a subspace of R(P,), 
hence the R (p,)  are orthogonal. The mixing property consists in the following: 
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where 
~ ( w , )  = -1 w, In w, 

n 

is the so-called mixing entropy. 
An important special case of the mixing property is the so-called additivity of 

entropy: S ( p 1 0 p 2 )  = S ( p l ) + S ( p 2 )  (it follows from (9) when one takes e.g. p1 io a 
spectral form p1 = X i  rili)(il).  

Let us take for every w, > O ,  an arbitrary state vector ]$,)E R(P,)  of norm 1 .  
Defining 

(a spectral form), one has S ( p )  = S ( w , ) .  Thus, 

S(P)  > S ( P )  ( 1 1 )  

if and only if ,  at least for one n, say no, w,,, > 0 and p,,,, in (8) is mixed, i.e. 

(12) 

This is where our problem begins. Comparing (8) plus (12) with (lo), it is intuitively 
clear that p is more heterogeneous or more mixed than D, and this is expressed by 
( 1 1 ) .  Since the mixing character is a qualitative concept that seems to underly the 
quantitative concept of entropy, one intuitively expects (8) and ( 1 0 )  to imply 

m [ p l ~ m [ D l ,  ( 1 3 ~ )  

2 
P n l ,  f ~ n , , .  

and if (1 2) holds, then 

m [ p I  > m[DI .  ( 1 3 6 )  

Relations ( 1 3 a )  and ( 1 3 6 )  'are the counterparts of the mixing property of entropy in 
terms of mixing char'acters. 

We prove now that ( 1 3 a )  (and ( 1 3 6 ) )  are indeed valid as formal consequences of 
the principle of increasing (strictly increasing) mixing character in general 
measurement. 

Let 

P =E wn C rtnItn)(tnI 
n 1, 

be a spectral form of p. Since (10) is a spectral form of p ,  its mixing character depends 
only on the w,, and not on the I$,). Hence we may rechoose the latter as I$:) 
(preserving J$L)ER(P,)). Defining ;=Z, w,l$L)($Ll, we have m[p'] = m [ p ] .  Let 
I$:)P~f,r:n/2)r,);andletusdefineB "Z,n(w, ,o ,Zf ,b , .r ,I t , ) ( t ,  +I.. .asacompleteobserv- 
able in its spectral form. Its measurement converts p' into Z, w, Zfn r f ~ ~ t , ) ( r , , ~  = p. If 
(12) is valid, then t,,, takes on more than one value. Then [l$klb)($L,,l, ~ t , ~ , ) ( t n 0 ~ ]  # 0 
(with any one of these values t , , ,).  Since all I$:), n # n,,, are orthogonal to It,,,) E R(P,, ,) ,  

[p'? l ~ ~ , ~ ~ ~ ~ " , , l l  = w",>[l4L,,)($:,,L ltn,,>(tn,,I l  f 0 .  

In view of the fact that p' commutes with B if and only if the former commutes with 
each eigenprojector of the latter, we conclude that [p', B ]  # 0. The principle of strictly 
increasing mixing character in incompatible measurement then finally gives (1 3 6 ) .  
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The weaker relation (13a) is an immediate consequence of the fact that 
into p by measurement. This concludes the proof. 

goes over 

4. Entropy and other mixing-homomorphic functionals 

4.1. Strictly mixing-homomorphic functionals 

Having discussed some consequences of the binary relation ‘having a strictly larger 
mixing character’ in the set of density operators, we proceed to discuss functionals 
which preserve this relation, i.e., which are strictly mixing homomorphic. 

To define a mixing-homomorphic functional on the set of all density operators p, 
Ruch and Mead (1976) consider functionals of the form G(g, p )  =Tr  g ( p )  = C, g ( p , ) ,  
where (P,JV,} is the spectrum of p (with repetitions of the eigenvalues in the case of 
multiplicities), and g is some suitable real function. By definition G(g, p )  is mixing 
homomorphic if 

(m[p‘l~:m[pl)J[G(g,p’)~G(g,p) l .  (14) 

If both inequalities in (14) are strict, we say that G(g, p )  is strictly mixing homomorphic. 
As can be easily seen, this relation is stronger than ‘mixing homomorphic’. 

The function g ( x )  is strictly concave in (0 ,  1) if for every choice of x ,  E (O,l), 
c 1 > 0 < ~ 2 , c , b O , a = 3 , 4  , . . ,  I ; , c ,= l ,onehas  

(Ruch and Mead 1976 would call this function strictly convex; our terminology is in 
agreement with that of Wehrll978). If g ( x )  is twice differentiable, then d 2 g ( x ) / d x 2  < 0 
in (0 ,  1) is a necessary and sufficient condition for strict concavity. 

Theorem 3. If g ( x )  is strictly concave in (0,  l ) ,  then G ( g , p )  is a strictly mixing 
homomorphic functional. 

Proof. If m[p’]  > m [ p ] ,  then there exists a non-trivial bistochastic matrix (Bog) such 
that Va,  p k  = Cg BUppg, where (PhlVa} and (PgIVp} are the spectra of p’ and p 
respectively. Inequality (15) implies: V a ,  g ( p k ) > Z p  BUgg(pD). Summing over a,  one 

0 arrives at I;, g ( p h )  = G ( g ,  p‘ )  > ZB g ( p 6 )  = G(g, p ) .  

k I l k  It is now easy to see that -llpllk = - ( Z D p g )  and the con Neumann entropy 
S ( p )  = - Z g p g  in pp are strictly mixing homomorphic. 

As mentioned previously, the von Neumann entropy has the property of additivity 
and hence it is irreplaceable for composite physical systems. But for non-composite 
ones a simpler functional, say -llp112 = -(Tr p2)’12,  is just as good for the purpose of 
making the set of all p’s totally pre-ordered via a strictly mixing-homomorphic 
functional. 

4.2. Mixing character and entropy in relation to the quoset of observables 

As it was explained at the beginning of 0 2, the set of general observables of a given 
quantal system is a quoset with A d B - A  = f ( B )  as the quasi-order defining this 
structure. When an arbitrary density operator p is given, then the relation ‘having a 
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larger mixing character’ among the probability distributions on the spectra of the 
observables in the state p introduces a new quoset structure in the set of all observables. 
The latter is relative: it depends on the selection of p. 

Theorem 4 .  When two observables A = Z, u,P, (n # n’=$ U, + U,,) and B = Z m  bmQm 
( m  # m’ 3 b, # b,,) are in the absolute quasi-order relation A B, then also Vp, 
m [ p ( u , l p ) ] s  m[p(b, lp)] .  This homomorphism is in general not strict, i.e. one may 
have A < B  and m [ ~ ( a , I p ) I = ~ [ ~ ( b m I p ) ] .  

Corollary. The relation A i B implies S[p(a,Ip)]  s S[p(b, lp)] ,  and this homomorph- 
ism is not strict. The same is true for every other mixing-homomorphic functional as 
well. 

Thus, in the set of general observables one has, besides the absolute quoset 
structure, also the quoset structure due to the relation ‘2’ or ‘having a larger mixing 
character in p’ and the total pre-order ‘having larger entropy in p ’ .  The relative 
quasi-order ‘2’ is interpolated between the absolute quasi-order and the total pre- 
order of the entropy, being ‘closer’ to the latter because it is from ‘3’ to ‘having larger 
entropy in p’ where the strict homomorphism holds. In this sense ‘2’ underlies entropy 
(cf also $ 3 . 2 ) .  

It is noteworthy that two observables A I  and A 2  have a common upper bound 
B :  A I  6 B. A 2 s  B,  if and only if [ A , ,  A*]  = 0 (cf von Neumann 1955, p 173). Clearly, 
with relation to a density operator p, a common upper bound can appear also for two 
incompatible observables. For instance, let B and B be two complete observables, 
the former compatible and the latter incompatible with p, then m[p(bs lp ) ]<  m[p(&lp) ]  
though B and B are incomparable regarding the absolute pre-order and are incompat- 
ible with each other. It is due to the fact that (p(bsIp)lV@} is the spectrum of p and 
that for the measurement of B the principle of strictly increasing mixing character is 
valid. 

5. Summary 

The principle of increasing mixing character in general measurement is shown to be 
valid. The principle of strictly increasing mixing character in incompatible general 
measurement and its consequences give a clear and sufficiently important physical 
meaning to the binary relation ‘strictly larger’ in the lattice of mixing characters. 

The functionals G ( g , p )  based on a strictly concave function g ( x )  preserve the 
‘strictly larger’ relation. The von Neumann entropy belongs to this class. 

Finally, the relative quoset structure of general observables with respect to any 
density operator is interpolated between the absolute quoset structure and the totally 
quasi-ordered set obtained via a strictly mixing-homomorphic functional. 
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